Learning Integrated Image Segmentation and Object Recognition

نویسندگان

  • Bir Bhanu
  • Jing Peng
چکیده

This paper presents a general approach to image segmentation and object recognition that learns a mapping from images with varying properties to segmentation algorithm parameters. The mapping is built using a reinforcement learning algorithm that is based on a team of generalized stochas-tic learning automata and operates separately in a global or local manner on an image. The edge-border coincidence is rst used as an immediate reinforcement to reduce computational expenses associated with model matching during the early stage of the learning process. Since this measure however can not reliably predict the outcome of object recognition , it is used in conjunction with model matching that provides optimal segmentation evaluation in a closed-loop object recognition system. Results are presented for both indoor and outdoor color images where the performance improvement over time is shown for both image segmentation and object recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

Adaptive integrated image segmentation and object recognition

This paper presents a general approach to image segmentation and object recognition that can adapt the image segmentation algorithm parameters to the changing environmental conditions. Segmentation parameters are represented by a team of generalized stochastic learning automata and learned using connectionist reinforcement learning techniques. The edge-border coincidence measure is first used a...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Segmentation Assisted Object Distinction for Direct Volume Rendering

Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...

متن کامل

Shape Priors and Online Appearance Learning for Variational Segmentation and Object Recognition in Static Scenes

We present an integrated two-level approach to computationally analyzing image sequences of static scenes by variational segmentation. At the top level, estimated models of object appearance and background are probabilistically fused to obtain an a-posteriori probability for the occupancy of each pixel. The data-association strategy handles object occlusions explicitly. At the lower level, obje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007